

Hydrology and Hydraulics of the Old Erie Canal

Old Erie Canal Annual Meeting Chittenango Landing Canal Boat Museum January 30, 2020

U.S. Department of the Interior U.S. Geological Survey

"This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information."

John Wernly U.S. Geological Survey Ithaca, NY

Overview

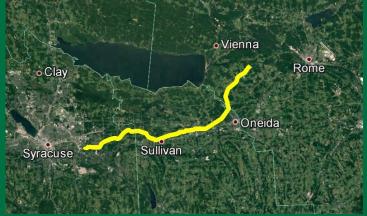
- The Old Erie Canal
 - History
 - Why survey it

USGS Study

- Study Area
- Establish water surface elevation
- Bathymetric Survey
- Water Quality Survey
- Mapped flow direction
- Document Canal Infrastructure

HEC-RAS Model

Tool to guide management decisions



Old Erie Canal

Built in 1825, superseded in 1918

"Long Level"

- 36 miles between Dewitt and Rome
- No locks
- Variety of stakeholders
 - Canal Corporation
 - State Parks system
 - 3 Counties
 - Several communities

Cooperator

Madison County Planning Department

Vision: Revitalize the Canal

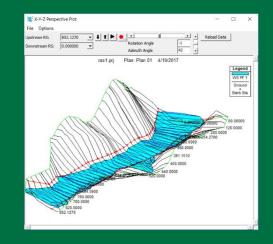
- Potential source of economic revitalization
- Improve the water flow and quality
 - Eliminate Stagnation of water
 - Reduce Algae
 - Reduce Foul Odor

Understand current condition and hydrology of the canal

Project Objectives

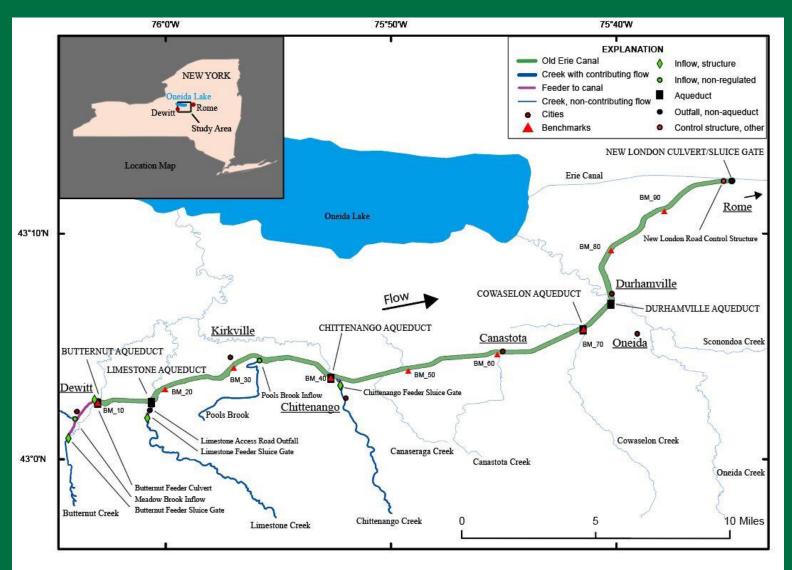
Phase 1

- Establish elevations
- Bathymetric survey
- Water Quality Survey
- Flow Direction
- Document and evaluate infrastructure
 - Series of Feeders
 - Aqueducts and outfalls


Phase 2

≈USGS

- HEC-RAS Model
 - Assess the feeder system
 - Improve flow through the system



Study Area

≈USGS

Establishing elevation

Water Level Changes
 Need to establish elevation of water surface

Installed 9 benchmarksGPS Surveyed

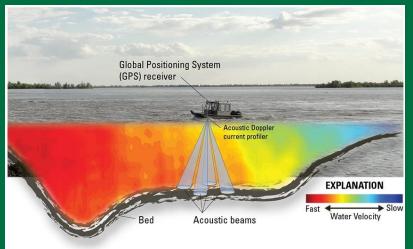
Staff Plates

- Tied into Benchmarks
- Read level of water surface

Further use

- Future studies
- Citizen Scientists

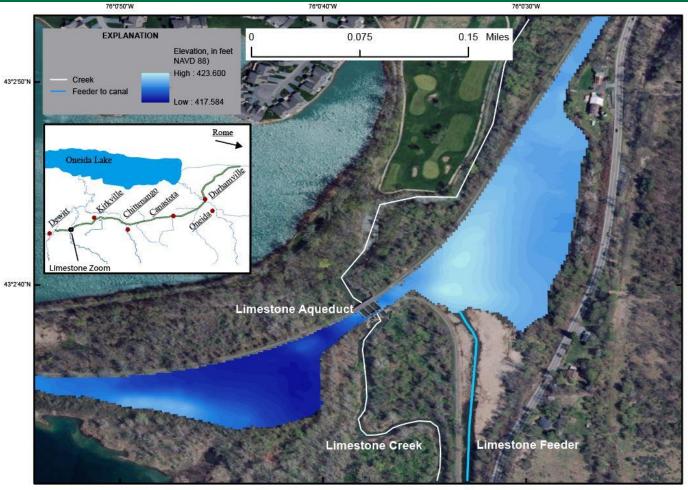
Create a map of the canal's bottom
 Depth of canal at any water level



Acoustic Doppler Current Profiler

- Measure depths
- GPS provides coordinates
- Advantage: measure velocity

30.8 Miles Surveyed


- Boat (Dewitt to Durhamville)
- Manually (Durhamville to NYS Barge Canal)

Bathymetric Map

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

<u>Dewitt to Durhamville</u>Average depth: 3.52 ft

• Range: 1.26 ft to 7.33 ft

≥USGS

Durhamville to NYS Barge CanalAverage depth: 1.36 ft

• Range: 0.68 ft to 2.44 ft

Flow Direction

Generally in the downstream direction

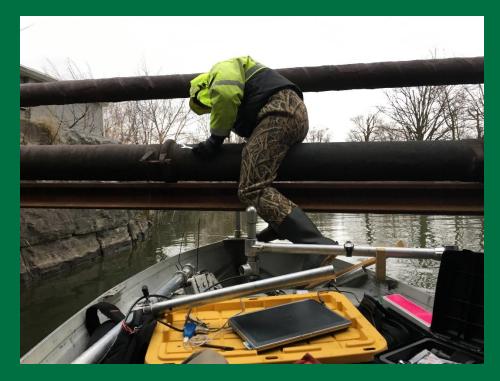
- Entire length of the canal
- Confirmed by visual inspections

Velocity increases downstream (Dewitt to Durhamville)

- Likely due to shallower depth
 - Discharge = Velocity x Area

	76*0'36"W	76°0'33'W	
EXPLANATION Velocity, mean speed (ft/s) 		0 0.015	0.03 Miles
432427N = 100-1.24 0.75-0.99 - 0.50-0.74 - 0.25-0.49 - 0.00-0.24	R. A.	Onerda Lake	an Contraction
	Mar .	Limestone Zoom	>
3/	5		
472374			
		Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES	/Airbus DS, USDA,

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community


Benchmark Section	Flow Velocities (ft/s)	
BM_10	0.214	
BM_20	0.192	
BM_30	0.188	
BM_40	0.261	
BM_50	0.289	
BM_60	0.279	
BM_70	0.365	

Flow velocities in each benchmark section of the canal.

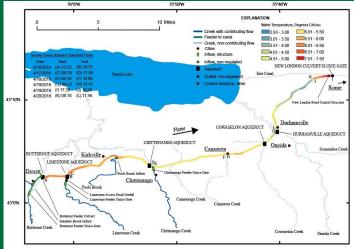
Survey Length: 30.8 miles

- 34 bridges to pass under
 - Many less than 3 feet above
 - Under I-90
- Dozens of fallen trees
- Zero boat ramps



Passing under a low bridge

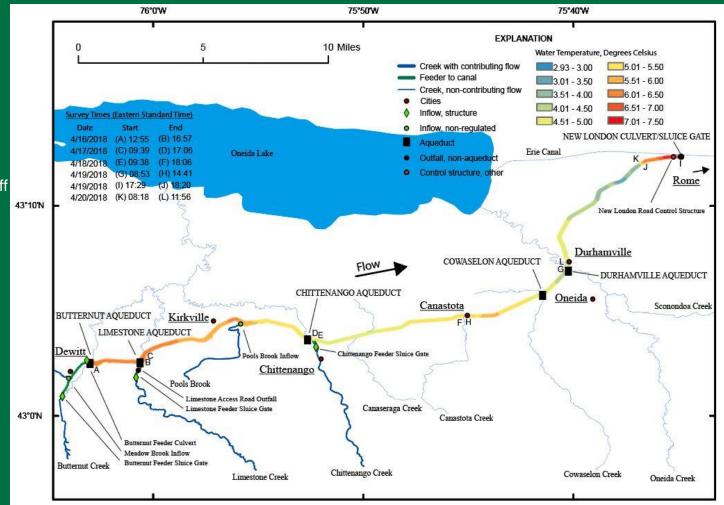
Obstacles


Water Quality Survey

- Water Temperature
- Turbidity
- Specific Conductance
- Dissolved Oxygen levels
- pH

Survey conducted April 2018

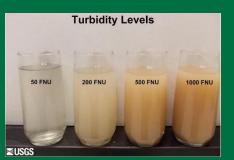
- Data collected every minute
- Provides a snapshot of the canal
 - Ideally repeat the survey
 - Seasonally
 - Pre- and post-storm
 - Collect samples

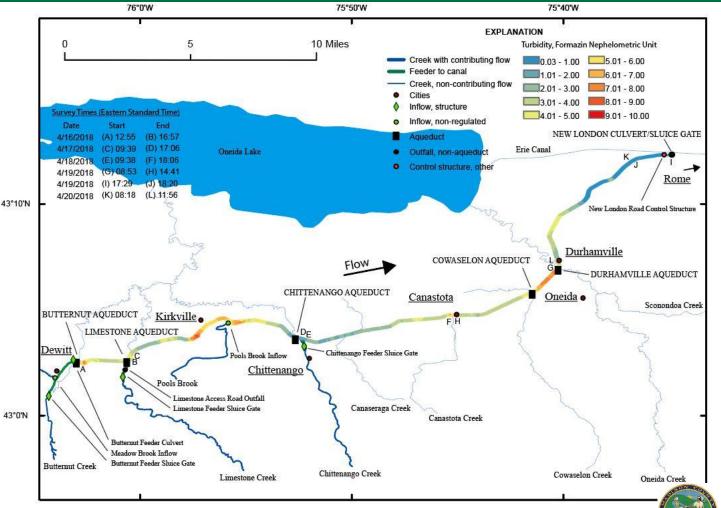


Water Temperature

Range

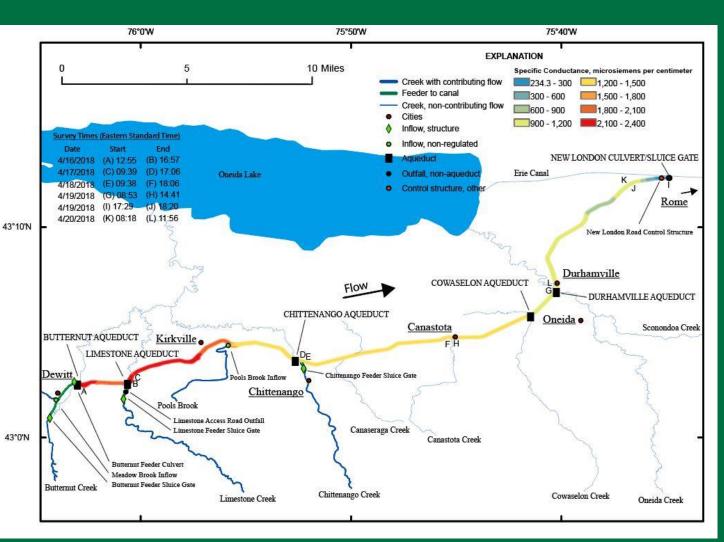
- 2.9 °C-7.5 ° C
- Timing Matters
 - Relative to stormwater runoff
 - Time of measurement (especially in shallow areas)




Turbidity

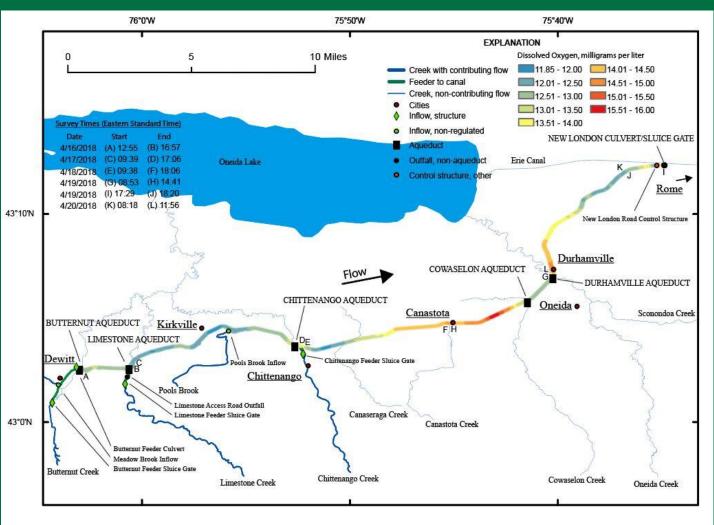
- "Cloudiness" or amount of particulate suspended in water
 - Silt, clay, and other solids
 - High Concentrations will lead to sedimentation
- Range
 - 0.03 10.00 FNU
- Explained by

≈USGS


- Feeders and streams experiencing runoff
- Stormwater runoff from low lying farm field
- Very low near end of canal

Specific Conductance

- Measure of ability of water to conduct electrical current
 - Related to amount of dissolved solutes (such as salt) in solution
- Range
 - 234 2,400 us/cm
 - <500 us/cm ideal
- Likely explained by
 - Road salts entering system during stormwater runoff (Western end)
 - Not Static
 - Dramatic decrease at Pools Brook inflow (-600)

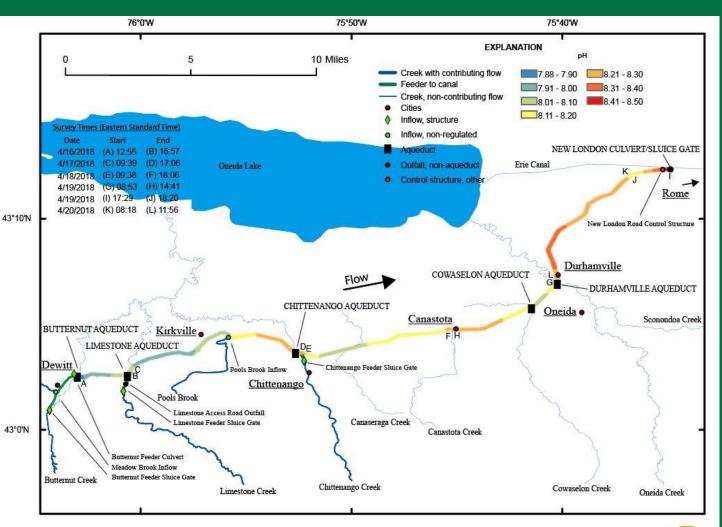


Dissolved Oxygen Levels

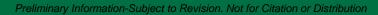
- Microscopic bubbles of oxygen mixed between water molecules
 - Used as an indicator of health in surface water
- Range
 - 11.8 16.0 mg/l
 Expect this to change in summer
- Highest DO

≈USGS

- Found downstream of Canastota
- Also where highest amounts of submerged aquatic vegetation found during survey
- Area of interest



рΗ


- Measurement of hydrogen-ion activity, at a given temperature, in a dilute solution
 - Too high or too low can be toxic to organisms
 - Natural water range is 6 - 9
- Range
 - 7.88 8.50
- General increase in pH along length of canal

≈USGS

 May correlate with increasing amounts of aquatic vegetation and higher levels of Dissolved Oxygen

Documenting the Canal's Infrastructure

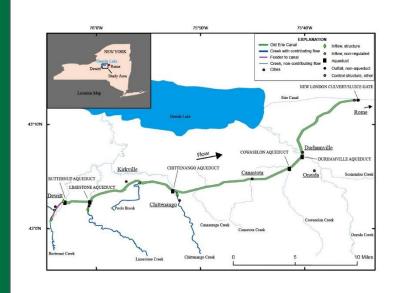
Document

- Current condition
- Measure dimensions of for future model
- Structures that control water in canal

Feeder System that supplies water

Aqueducts and outfalls where water exits

Feeder System: Bringing water to the Canal


- Inflow structures
 - Butternut Creek Sluice Gate
 - Limestone Creek Sluice Gate
 - Chittenango Creek Sluice Gate

- Feeders
 - Designed to continuously supply water
 - <u>Currently do not</u>

- Natural Streams into canal
 - Meadow Brook
 - Pools Brook

 Only source of continuous water supply

Butternut Sluice Gate

Front of Sluice Gate

≥USGS

Backside of Sluice Gate

- No continuous flow
- Flow into canal only when creek overtops levee walls
- Potential to increase flow with repairs

Butternut Feeder and Meadow Brook

Groundwater contribution

Meadow Brook inflow

Narrow US of Andrews Rd.

- Channel will
 convey flow well
- Dense weeds (phragmites) in one section

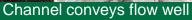
Widens downstream (backwater)

Dense weeds (phragmites)

Limestone Sluice Gate

Sluice Gate with location of removed dam in background

Weir undercut and thus removed


≥USGS

- No continuous flow
- Weir removed in 2008
- Flow only during high water

Gates open, designed to stem flooding in canal

Pools Brook Inflow

Enters via culvert

Continuous flow

Chittenango Sluice Gate

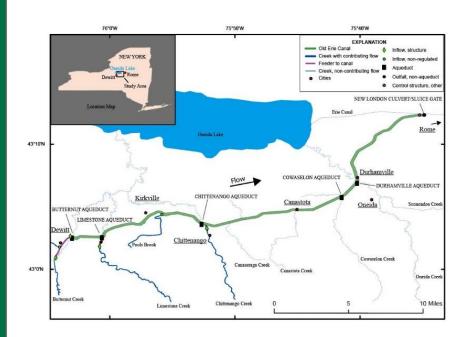
Front side of sluice gate

Sedimentation

- No continuous flow
- Flow only during high water
- As recent as 1996 opened and closed every year as needed

Weir functionally raises water level

Flash boards could be manually set


Aqueducts and Outfalls

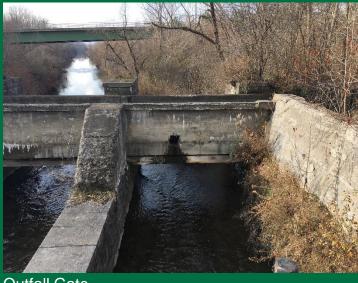
Outfall Structures

- Butternut Aqueduct
- Limestone Aqueduct
- Limestone Access Road outfall
- Chittenango Aqueduct
- Durhamville Aqueduct
- New London Road I-beam
- New London Culvert/Sluice Gate

• Gated openings

- Capable of controlling water level
- Lot of water exiting the system
- Potential to improve flow

Butternut Aqueduct



Conveys canal over Butternut Creek

- Capable of discharging into Butternut Creek
- Gates Closed no outflow

Butternut Aqueduct

Limestone Aqueduct

Conveys canal over Limestone Creek

- Capable of discharging into Limestone Creek
- Gate closed No outflow

Limestone Aqueduct

Limestone Access Road Outfall

Backside of control structure

Discharging into Limestone Creek

- Discharging into Limestone Creek
- 1 of 3 gates partially open

Chittenango Aqueduct

Conveys canal over Chittenango Creek

Old Erie Canal at Chittenango Aqueduct

Outfall gate partially closed with flashboards

≥USGS

- Discharging into Chittenango Creek
- Potential to increase height of flashboards

Considerable amount of water lost

Cowaselon Aqueduct

Conveys canal over Cowaselon Creek

Outfall gate partially closed

 Discharging into Cowaselon Creek

 Potential to increase height of flashboards

Cowaselon Aqueduct

Flashboards - 1 outfall blocking outflow

Durhamville Aqueduct

Conveys canal over Oneida Creek

2 sets of flashboards

≥USGS

 Rectangular opening?

Large rectangular opening

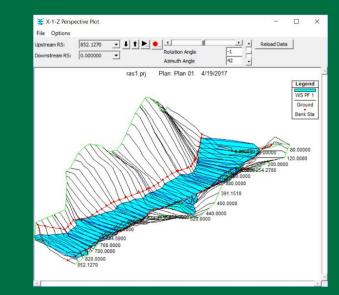
Canal Past Durhamville

New London Culvert/Sluice Gate

≥USGS

 Old Erie Canal meets NYS Barge Canal

• Minimal flow


NYS Barge Canal in far background

Phase 2 - Modeling changes

HEC-RAS Model

- Elevations of water surface (staff plates)
- Bathymetric Dataset
- Dimensions of canal infrastructure

Can we meaningfully increase flow within the canal?

Tool for management decisions

- · How much will flow increase?
 - If we open Butternut Creek Sluice Gate 6 inches
- How much will water level increase?
 - If we raise flashboards 1 ft, 2 ft, 3 ft, etc
- Will flow improve downstream of Durhamville?
 - If we raise the flashboards

Questions?

John Wernly U.S. Geological Survey Ithaca, NY Jfwernly@USGS.gov 607-266-0217 (ext. 3025)

